Effect of Uncertainty in Blowing Ratio on Film Cooling Effectiveness

نویسندگان

  • Hessam Babaee
  • Xiaoliang Wan
  • Sumanta Acharya
چکیده

In this study, the effect of randomness of blowing ratio on film cooling performance is investigated by combining direct numerical simulations with a stochastic collocation approach. The geometry includes a 35-deg inclined jet with a plenum attached to it. The blowing ratio variations are assumed to have a truncated Gaussian distribution with mean of 0.3 and the standard variation of approximately 0.1. The parametric space is discretized using multi-element general polynomial chaos (ME-gPC) with five elements where general polynomial chaos of order 3 is used in each element. Direct numerical simulations were carried out using spectral element method to sample the governing equations in space and time. The probability density function of the film cooling effectiveness was obtained and the standard deviation of the adiabatic film cooling effectiveness on the blade surface was calculated. A maximum of 20% of variation in film cooling effectiveness was observed at 2.2 jet-diameter distance downstream of the exit hole. The spatially-averaged adiabatic film cooling effectiveness was 0.236 0.02. The calculation of all the statistical properties were carried out as off-line post processing. A fast convergence of the polynomial expansion in the random space is observed which shows that the computational strategy is very cost-effective. [DOI: 10.1115/1.4025562]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی عددی تاثیرنسبت تزریق و زوایای انحرافی در عملکرد آدیاباتیک خنک کاری لایه ای

Film Cooling Adiabatic Effectiveness on a Specific Profile of a Gas Turbine blade that Using Holes with 25 and 45 Degree Combined Angles to the Flow Direction and Radial Along the Attack Edge as well as 25 Degree Angles to the Flow Direction and Surface Area of the Attack Edge Area , Under two different blowing ratios, using the Reynolds stress approach and the SST turbulence model, have been i...

متن کامل

An Innovation in Film Cooling of the Gas Turbine Blades Applying an Upstream Jet

A new design concept is introduced to control the near-wall integration between the hot-gas boundary layer and the cooling jets in order to enhance the adiabatic film cooling effectiveness of the gas turbine blades. In this new approach, another film cooling port, having a very low blowing ratio, which prevents formation of the counter-rotating vortex pare, is applied just upstream of the main ...

متن کامل

Numerical Simulation Of the Componend Angles Effects On Adiabatic Film Cooling Effectiveness

Abstract Film Cooling Adiabatic Effectiveness on a Profile of a Gas Turbine blade that Using Holes with 45 Degree Combined Angles to the Flow Direction and Radial Along the Attack Edge as well as 25 Degree Angles to the Flow Direction and Surface Area of the Attack Edge Area and 35 degrees relative to the outlet hole suefaces along stagnation line, Under a specified blowing ratios, using the Re...

متن کامل

Study of Trailing-Edge Cooling Using Pressure Sensitive Paint Technique

An experimental investigation was conducted to study the effects of blowing ratio and the existence of lands on the film cooling effectiveness of a turbine blade trailing-edge model. Instead of using a temperature-based technique, a mass transfer analogywas used to quantify the film cooling effectiveness. This was done through themeasurement of the distribution of oxygen concentration over the ...

متن کامل

Effects of Various Modeling Schemes on Mist Film Cooling Simulation

Numerical simulation is performed in this study to explore filmcooling enhancement by injecting mist into the cooling air with a focus on investigating the effect of various modeling schemes on the simulation results. The effect of turbulence models, dispersed-phase modeling, inclusion of different forces (Saffman, thermophoresis, and Brownian), trajectory tracking, and mist injection scheme is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013